
Dilaka Lathapipat

Australian National University and Dhurakij Pundit University

July 2008
Problem Statement

- Composition of educational attainments of male workers changed dramatically over the last two decades (1987-2006)
Problem Statement

- Composition of educational attainments of male workers changed dramatically over the last two decades (1987-2006)
- Average years of schooling increased by almost 2 years over the period to 9.6 years in 2006
Problem Statement

- Composition of educational attainments of male workers changed dramatically over the last two decades (1987-2006)
- Average years of schooling increased by almost 2 years over the period to 9.6 years in 2006
- Overall inequality in hourly wages (as measured by Gini and Generalised Entropy indices) has generally declined since 1998
Problem Statement

- Composition of educational attainments of male workers changed dramatically over the last two decades (1987-2006)
- Average years of schooling increased by almost 2 years over the period to 9.6 years in 2006
- Overall inequality in hourly wages (as measured by Gini and Generalised Entropy indices) has generally declined since 1998
- Closer examination reveals improvements in inequality only at the bottom half of the wage distribution
Problem Statement

- Composition of educational attainments of male workers changed dramatically over the last two decades (1987-2006)
- Average years of schooling increased by almost 2 years over the period to 9.6 years in 2006
- Overall inequality in hourly wages (as measured by Gini and Generalised Entropy indices) has generally declined since 1998
- Closer examination reveals improvements in inequality only at the bottom half of the wage distribution
- Wage dispersion has steadily increased at the top end
Problem Statement

- Composition of educational attainments of male workers changed dramatically over the last two decades (1987-2006)
- Average years of schooling increased by almost 2 years over the period to 9.6 years in 2006
- Overall inequality in hourly wages (as measured by Gini and Generalised Entropy indices) has generally declined since 1998
- Closer examination reveals improvements in inequality only at the bottom half of the wage distribution
- Wage dispersion has steadily increased at the top end
- This study seeks to understand the contributing factors (focus on education) to the observed changes in wage distribution
Stylised Facts

- Cross-Sectional datasets from Thai LFS from 1987-2006
Stylised Facts

Cross-Sectional datasets from Thai LFS from 1987-2006

Composition of Highest Educational Qualification Attained for Thai Men

![Composition of Highest Educational Qualification Attained for Thai Men](image-url)
Stylised Facts

- Individuals categorised into 7 education groups
Stylised Facts

- Individuals categorised into 7 education groups
- Proportion of those with less than upper secondary qualifications went down from 75.7% to 56.3% over two decades (drop of 19.4 percentage points)

Mostly absorbed by a 7.7 and a 7.3 percentage point increases in “Upper Secondary” and “College” categories respectively. “Post Secondary” group increases by 2.8 percentage points over the period. The largest increases in “Upper Secondary” and “Post Secondary” groups seen in 2001. Mainly due to the establishment of the SLF in 1996.
Stylised Facts

- Individuals categorised into 7 education groups
- Proportion of those with less than upper secondary qualifications went down from 75.7% to 56.3% over two decades (drop of 19.4 percentage points)
- Mostly absorbed by a 7.7 and a 7.3 percentage point increases in "Upper Secondary" and "College" categories respectively
- The largest increases in "Upper Secondary" and "Post Secondary" groups seen in 2001
- Mainly due to the establishment of the SLF in 1996
Stylised Facts

- Individuals categorised into 7 education groups
- Proportion of those with less than upper secondary qualifications went down from 75.7% to 56.3% over two decades (drop of 19.4 percentage points)
- Mostly absorbed by a 7.7 and a 7.3 percentage point increases in "Upper Secondary" and "College" categories respectively
- "Post Secondary" group increases by 2.8 percentage points over the period
Stylised Facts

- Individuals categorised into 7 education groups
- Proportion of those with less than upper secondary qualifications went down from 75.7% to 56.3% over two decades (drop of 19.4 percentage points)
- Mostly absorbed by a 7.7 and a 7.3 percentage point increases in "Upper Secondary" and "College" categories respectively
- "Post Secondary" group increases by 2.8 percentage points over the period
- The largest increases in "Upper Secondary" and "Post Secondary" groups seen in 2001
Stylised Facts

- Individuals categorised into 7 education groups
- Proportion of those with less than upper secondary qualifications went down from 75.7% to 56.3% over two decades (drop of 19.4 percentage points)
- Mostly absorbed by a 7.7 and a 7.3 percentage point increases in "Upper Secondary" and "College" categories respectively
- "Post Secondary" group increases by 2.8 percentage points over the period
- The largest increases in "Upper Secondary" and "Post Secondary" groups seen in 2001
- Mainly due to the establishment of the SLF in 1996
Stylised Facts

Ratio of Average Real Wages to the Twenty-Year Average by Education Groups

Dilaka Lathapipat (ANU and DPU)
Wage Distribution in Thailand
July 2008
Stylised Facts

- The boom decade (1987-1996) saw Thailand’s real GDP growing at an average of 9.5% p.a.
Stylised Facts

- The boom decade (1987-1996) saw Thailand’s real GDP growing at an average of 9.5% p.a.
- All 7 education categories gained relative to the 20-year average real wage rate during the boom
Stylised Facts

- The boom decade (1987-1996) saw Thailand’s real GDP growing at an average of 9.5% p.a.
- All 7 education categories gained relative to the 20-year average real wage rate during the boom
- In 1987 the ratio profiles of the bottom three groups are all below the reference rate (75% of the sample)

Dilaka Lathapipat (ANU and DPU)
Stylised Facts

- The boom decade (1987-1996) saw Thailand’s real GDP growing at an average of 9.5% p.a.
- All 7 education categories gained relative to the 20-year average real wage rate during the boom.
- In 1987 the ratio profiles of the bottom three groups are all below the reference rate (75% of the sample).
- Post-1996 the decline of the profiles of "Upper Secondary" and "Post Secondary" groups is even more rapid than the rise during the boom.
Stylised Facts

- The boom decade (1987-1996) saw Thailand’s real GDP growing at an average of 9.5% p.a.
- All 7 education categories gained relative to the 20-year average real wage rate during the boom.
- In 1987 the ratio profiles of the bottom three groups are all below the reference rate (75% of the sample).
- Post-1996 the decline of the profiles of "Upper Secondary" and "Post Secondary" groups is even more rapid than the rise during the boom.
- By 2001, the average real wages for every group below "College" are below the 1987 levels.
Stylised Facts

- The boom decade (1987-1996) saw Thailand’s real GDP growing at an average of 9.5% p.a.
- All 7 education categories gained relative to the 20-year average real wage rate during the boom
- In 1987 the ratio profiles of the bottom three groups are all below the reference rate (75% of the sample)
- Post-1996 the decline of the profiles of "Upper Secondary" and "Post Secondary" groups is even more rapid than the rise during the boom
- By 2001, the average real wages for every group below "College" are below the 1987 levels
- The bottom three groups now have their profiles below the reference rate (≈72% of each of 2001-2006 samples)
Stylised Facts

- The boom decade (1987-1996) saw Thailand’s real GDP growing at an average of 9.5% p.a.
- All 7 education categories gained relative to the 20-year average real wage rate during the boom.
- In 1987 the ratio profiles of the bottom three groups are all below the reference rate (75% of the sample).
- Post-1996 the decline of the profiles of "Upper Secondary" and "Post Secondary" groups is even more rapid than the rise during the boom.
- By 2001, the average real wages for every group below "College" are below the 1987 levels.
- The bottom three groups now have their profiles below the reference rate (∼72% of each of 2001-2006 samples).
- The groups with university degrees have on average increased their advantage significantly over the rest.
Stylised Facts

Comparison of Hourly Wages between Different Percentiles

- Wage inequality has steadily increased at the top half of the distribution
Stylised Facts

Comparison of Hourly Wages between Different Percentiles

- Wage inequality has steadily increased at the top half of the distribution
- Opposite phenomenon has occurred at the bottom half

A closer look at different points in the wage distribution reveals a different story.
FFL Decomposition

- This study seeks to decompose changes in the wage distribution over time
This study seeks to decompose changes in the wage distribution over time.

The method used is first proposed by Firpo, Fortin and Lemieux (2007).
This study seeks to decompose changes in the wage distribution over time. The method used is first proposed by Firpo, Fortin and Lemieux (2007).

Set-up of the problem:

Focus on two time periods, \(T = 0, 1 \) and the distributional measure \(\nu \) (quantiles) whose change we will decompose. The wage structure function depends on observed and unobserved attributes \((X_i, \varepsilon_i)\) for \(T = 0, 1 \) and \(i = 1, \ldots, N \).

The observed wage for individual \(i \) is:

\[Y_i = Y_{1i} T_i + Y_{0i} (1 - T_i) \]

We have a missing data problem since we only observe either \(Y_0 \) or \(Y_1 \) and not both for each individual.
This study seeks to decompose changes in the wage distribution over time.

The method used is first proposed by Firpo, Fortin and Lemieux (2007).

Set-up of the problem:

Focus on two time periods, $T = 0, 1$ and the distributional measure ν (quantiles) whose change we will decompose.
This study seeks to decompose changes in the wage distribution over time.

The method used is first proposed by Firpo, Fortin and Lemieux (2007).

Set-up of the problem:

- Focus on two time periods, $T = 0, 1$ and the distributional measure ν (quantiles) whose change we will decompose.
- The wage structure function depends on observed and unobserved attributes (X_i, ε_i).
This study seeks to decompose changes in the wage distribution over time.

The method used is first proposed by Firpo, Fortin and Lemieux (2007).

Set-up of the problem:

- Focus on two time periods, $T = 0, 1$ and the distributional measure ν (quantiles) whose change we will decompose.
- The wage structure function depends on observed and unobserved attributes (X_i, ε_i).
- $Y_{Ti} = g_T(X_i, \varepsilon_i)$ for $T = 0, 1$ and $i = 1, \ldots, N$.
This study seeks to decompose changes in the wage distribution over time.
The method used is first proposed by Firpo, Fortin and Lemieux (2007).
Set-up of the problem:
- Focus on two time periods, $T = 0, 1$ and the distributional measure ν (quantiles) whose change we will decompose.
- The wage structure function depends on observed and unobserved attributes (X_i, ε_i).
- $Y_{Ti} = g_T(X_i, \varepsilon_i)$ for $T = 0, 1$ and $i = 1, \ldots, N$.
- The observed wage for individual i is $Y_i = Y_{1i} T_i + Y_{0i} (1 - T_i)$.

Dilaka Lathapipat (ANU and DPU)
This study seeks to decompose changes in the wage distribution over time.

The method used is first proposed by Firpo, Fortin and Lemieux (2007).

Set-up of the problem:

- Focus on two time periods, $T = 0, 1$ and the distributional measure ν (quantiles) whose change we will decompose.
- The wage structure function depends on observed and unobserved attributes (X_i, ε_i).
- $Y_{Ti} = g_T(X_i, \varepsilon_i)$ for $T = 0, 1$ and $i = 1, \ldots, N$.
- The observed wage for individual i is $Y_i = Y_{1i}T_i + Y_{0i}(1 - T_i)$.
- We have a missing data problem since we only observe either Y_0 or Y_1 and not both for each individual.
In the first stage of FFL decomposition the overall change in functional ν from date 0 to 1 is divided into "wage structure" and "composition" effects.
In the first stage of FFL decomposition the overall change in functional ν from date 0 to 1 is divided into "wage structure" and "composition" effects

$$\Delta \nu^O = \Delta \nu^S + \Delta \nu^X = (\nu(F_1) - \nu(F_C)) + (\nu(F_C) - \nu(F_0))$$
In the first stage of FFL decomposition the overall change in functional ν from date 0 to 1 is divided into "wage structure" and "composition" effects

- $\Delta \nu_O = \Delta \nu_S + \Delta \nu_X = (\nu(F_1) - \nu(F_C)) + (\nu(F_C) - \nu(F_0))$
- The empirical counterparts of $F_0(y)$ and $F_1(y)$ are nonparametrically identified from data
In the first stage of FFL decomposition the overall change in functional \(\nu \) from date 0 to 1 is divided into "wage structure" and "composition" effects:

\[
\Delta \nu_O = \Delta \nu_S + \Delta \nu_X = (\nu(F_1) - \nu(F_C)) + (\nu(F_C) - \nu(F_0))
\]

- The empirical counterparts of \(F_0(y) \) and \(F_1(y) \) are nonparametrically identified from data.
- \(F_C(y) \) is the counterfactual distribution under wage structure function of year 0, but with \((X, \varepsilon)\) jointly distributed as in year 1.
In the first stage of FFL decomposition the overall change in functional ν from date 0 to 1 is divided into "wage structure" and "composition" effects.

$$\Delta^\nu_O = \Delta^\nu_S + \Delta^\nu_X = (\nu(F_1) - \nu(F_C)) + (\nu(F_C) - \nu(F_0))$$

The empirical counterparts of $F_0(y)$ and $F_1(y)$ are nonparametrically identified from data.

$F_C(y)$ is the counterfactual distribution under wage structure function of year 0, but with $(\mathbf{X}, \varepsilon)$ jointly distributed as in year 1.

Identification of $F_C(y)$ which ensures that Δ^ν_X only reflect changes in the distribution of \mathbf{X} requires:
In the first stage of FFL decomposition the overall change in functional ν from date 0 to 1 is divided into "wage structure" and "composition" effects

- $\Delta \nu_O = \Delta \nu_S + \Delta \nu_X = (\nu(F_1) - \nu(F_C)) + (\nu(F_C) - \nu(F_0))$
- The empirical counterparts of $F_0(y)$ and $F_1(y)$ are nonparametrically identified from data
- $F_C(y)$ is the counterfactual distribution under wage structure function of year 0, but with (X, ε) jointly distributed as in year 1

Identification of $F_C(y)$ which ensures that $\Delta \nu_X$ only reflect changes in the distribution of X requires:

- $(\varepsilon_0, \varepsilon_1)$ distributed independently of T after conditioning on X
In the first stage of FFL decomposition the overall change in functional ν from date 0 to 1 is divided into "wage structure" and "composition" effects

$$\Delta^\nu_O = \Delta^\nu_S + \Delta^\nu_X = (\nu(F_1) - \nu(F_C)) + (\nu(F_C) - \nu(F_0))$$

The empirical counterparts of $F_0(y)$ and $F_1(y)$ are nonparametrically identified from data.

$F_C(y)$ is the counterfactual distribution under wage structure function of year 0, but with (X, ϵ) jointly distributed as in year 1.

Identification of $F_C(y)$ which ensures that Δ^ν_X only reflect changes in the distribution of X requires:

1. (ϵ_0, ϵ_1) distributed independently of T after conditioning on X
2. $0 < P(T = 1|x) < 1$ for all $x \in X$
Note that $F_T(y; T_x = T) = \int_X F_{T,Y|X}(y|x) dF_{X|T}(x|T_x = T)$
Note that \(F_T(y; T_X = T) = \int_X F_{T,Y|X}(y|x) dF_{X|T}(x|T_X = T) \).

The counterfactual distribution can thus be constructed as

\[
F_C(y) = \int_X F_{0,Y|X}(y|x) dF_{X|T}(x|T_X = 1)
= \int_X F_{0,Y|X}(y|x) \frac{dF_{X|T}(x|T_X = 1)}{dF_{X|T}(x|T_X = 0)} dF_{X|T}(x|T_X = 0)
= \int_X F_{0,Y|X}(y|x) \psi_x(x) dF_{X|T}(x|T_X = 0)
= F_0(y; T_X = 1)
\]
Note that $F_T(y; T_X = T) = \int_X F_{T,Y|X}(y|x) dF_{X|T}(x|T_X = T)$

The counterfactual distribution can thus be constructed as

$$F_C(y) = \int_X F_{0,Y|X}(y|x) dF_{X|T}(x|T_X = 1)$$

$$= \int_X F_{0,Y|X}(y|x) \frac{dF_{X|T}(x|T_X = 1)}{dF_{X|T}(x|T_X = 0)} dF_{X|T}(x|T_X = 0)$$

$$= \int_X F_{0,Y|X}(y|x) \psi_x(x) dF_{X|T}(x|T_X = 0)$$

$$= F_0(y; T_X = 1)$$

Applying Baye’s rule, the IPW is expressed as

$$\psi_x(x) = \frac{P(T = 1|x)P(T = 0)}{P(T = 0|x)P(T = 1)}$$

$$\quad = \left(\frac{-p(x)}{1-p(x)} \right) \left(\frac{1-p}{p} \right)$$
The 2nd stage further decomposes Δ_S^ν and Δ_X^ν into the contribution of each covariate.
The 2nd stage further decomposes Δ^V_S and Δ^V_X into the contribution of each covariate.

Comparable to the Oaxaca-Blinder decomposition.
The 2nd stage further decomposes Δ^ν_S and Δ^ν_X into the contribution of each covariate.

Comparable to the Oaxaca-Blinder decomposition.

To study the effect on distributional statistic ν of changes in X, the Recentred Influence Function (RIF) Regression is used.
FFL Decomposition - 2nd Stage

- The 2nd stage further decomposes Δ^ν_S and Δ^ν_X into the contribution of each covariate.
- Comparable to the Oaxaca-Blinder decomposition.
- To study the effect on distributional statistic ν of changes in X, the Recentred Influence Function (RIF) Regression is used.
- The influence function introduced by Hampel (1974) is defined as

$$IF_F(y; \nu) = \lim_{\epsilon \downarrow 0} \frac{\nu(F + \epsilon(\delta y - F)) - \nu(F)}{\epsilon}, \text{ for } \epsilon \in (0, 1)$$
The 2nd stage further decomposes Δ^V_S and Δ^V_X into the contribution of each covariate.

Comparable to the Oaxaca-Blinder decomposition.

To study the effect on distributional statistic ν of changes in X, the Recentred Influence Function (RIF) Regression is used.

The influence function introduced by Hampel (1974) is defined as

$$IF_F(y; \nu) = \lim_{\epsilon \downarrow 0} \frac{\nu(F + \epsilon(\delta_y - F)) - \nu(F)}{\epsilon}, \text{ for } \epsilon \in (0, 1)$$

If ν is Gâteaux differentiable at F, a first order von Mises expansion for some distribution function G close to F is

$$\nu(G) = \nu(F) + \int a(y)d(G - F)(y) + r$$
Usual standardisation is to replace $a(y)$ with the influence function

$$\nu(G) = \nu(F) + \int IF_F(y; \nu) d(G)(y) + r$$
FFL Decomposition - 2nd Stage

- Usual standardisation is to replace \(a(y) \) with the influence function

\[
\nu(G) = \nu(F) + \int IF_F(y; \nu) d(G)(y) + r
\]

- For \(G = \delta_y \), FFL call this first order approx the RIF:

\[
RIF_F(y; \nu) = \nu(F) + \int IF_F(y; \nu) d\delta_y(y) = \nu(F) + IF_F(y; \nu)
\]
Usual standardisation is to replace $a(y)$ with the influence function

$$
\nu(G) = \nu(F) + \int IF_F(y; \nu) d(G)(y) + r
$$

For $G = \delta_y$, FFL call this first order approx the RIF:

$$
RIF_F(y; \nu) = \nu(F) + \int IF_F(y; \nu) d\delta_y(y) = \nu(F) + IF_F(y; \nu)
$$

The $RIF_F(y; \nu)$ integrates up to the functional of interest $\nu(F)$:

$$
\int RIF_F(y; \nu) dF(y) = \nu(F)
$$

$$
E_X[E[RIF_F(y; \nu)|x]] = E_X[m^\nu(x)] = \nu(F)
$$

by LIE, and $m^\nu(x)$ denotes the RIF regression model.
FFL Decomposition - 2nd Stage

- Consider linear structural model (directly comparable to Oaxaca-Blinder):

\[
E[m_T(x) | T_x = T] = E[x' | T_x = T] \beta^T_T = \nu(F_T), \text{ for } T = 0, 1
\]

\[
E[m_C(x) | T_x = 1] = E[x' | T_x = 1] \beta^C_C = \nu(F_C)
\]

where

\[
\beta^T_T = (E[xx' | T_x = T])^{-1} E[x \cdot RIF_{FT}(y_T; \nu_T) | T_x = T], \text{ for } T = 0, 1
\]

\[
\beta^C_C = (E[xx' | T_x = 1])^{-1} E[x \cdot RIF_{FC}(y_0; \nu_C) | T_x = 1]
\]
Consider linear structural model (directly comparable to Oaxaca-Blinder):

\[E[m_T^\nu(x)|T_x = T] = E[x'|T_x = T]\beta_T^\nu = \nu(F_T), \text{ for } T = 0, 1 \]
\[E[m_C^\nu(x)|T_x = 1] = E[x'|T_x = 1]\beta_C^\nu = \nu(F_C) \]

where

\[\beta_T^\nu = \left(E[xx'|T_x = T]\right)^{-1} E[x.RIF_{F_T}(y_T; \nu_T)|T_x = T], \text{ for } T = 0, 1 \]
\[\beta_C^\nu = \left(E[xx'|T_x = 1]\right)^{-1} E[x.RIF_{F_C}(y_0; \nu_C)|T_x = 1] \]

We have the generalised Oaxaca-Blinder decomposition:

\[\Delta_O^\nu = \Delta_S^\nu + \Delta_X^\nu = (\nu(F_1) - \nu(F_C)) + (\nu(F_C) - \nu(F_0)) \]
\[= E[x'|T = 1](\beta_1^\nu - \beta_C^\nu) + (E[x'|T = 1]\beta_C^\nu - E[x'|T = 0]\beta_0^\nu) \]
Looking at the means of the distribution

Wage Structure Effects with Attributes distributed as in 2006
Results

- Looking at the means of the distribution

Wage Structure Effects with Attributes distributed as in 2006

- Steady fall in the average returns to education
Composition Effects with 2006 Prices of Attributes

Dilaka Lathapipat (ANU and DPU)
Results

Composition Effects with 2006 Prices of Attributes

- Upward shift in the average rate of schooling accumulation coincides with the declining returns
Results

- Time line for analysis is divided into three interesting intervals:
 - The economic boom period of 1988-1996
 - The economic crisis from 1996-2000
 - Recent developments running from 2001-2006

Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year.

The covariates used are:
- 15 education dummies
- Potential experience and its square
- Marital status
- 9 occupation and 15 industry dummies
- Region and area of residence
Results

- Time line for analysis is divided into three interesting intervals:
 - The economic boom period of 1988-1996
Results

- Time line for analysis is divided into three interesting intervals:
 - The economic boom period of 1988-1996
 - The economic crisis from 1996-2000

Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year

The covariates used are:
- 15 education dummies
- Potential experience and its square
- Marital status
- 9 occupation and 15 industry dummies
- Region and area of residence

Dilaka Lathapipat (ANU and DPU)
Wage Distribution in Thailand
July 2008
Results

- Time line for analysis is divided into three interesting intervals:
 - The economic boom period of 1988-1996
 - The economic crisis from 1996-2000
 - Recent developments running from 2001-2006
Time line for analysis is divided into three interesting intervals:

- The economic boom period of 1988-1996
- The economic crisis from 1996-2000
- Recent developments running from 2001-2006

Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year
Results

- Time line for analysis is divided into three interesting intervals:
 - The economic boom period of 1988-1996
 - The economic crisis from 1996-2000
 - Recent developments running from 2001-2006

- Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year

- The covariates used are:
Time line for analysis is divided into three interesting intervals:
- The economic boom period of 1988-1996
- The economic crisis from 1996-2000
- Recent developments running from 2001-2006

Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year

The covariates used are:
- 15 education dummies
Results

- Time line for analysis is divided into three interesting intervals:
 - The economic boom period of 1988-1996
 - The economic crisis from 1996-2000
 - Recent developments running from 2001-2006

- Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year

- The covariates used are:
 - 15 education dummies
 - Potential experience and its square
Time line for analysis is divided into three interesting intervals:

- The economic boom period of 1988-1996
- The economic crisis from 1996-2000
- Recent developments running from 2001-2006

Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year

The covariates used are:

- 15 education dummies
- Potential experience and its square
- Marital status
Results

- Time line for analysis is divided into three interesting intervals:
 - The economic boom period of 1988-1996
 - The economic crisis from 1996-2000
 - Recent developments running from 2001-2006

- Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year

- The covariates used are:
 - 15 education dummies
 - Potential experience and its square
 - Marital status
 - 9 occupation and 15 industry dummies
Results

- Time line for analysis is divided into three interesting intervals:
 - The economic boom period of 1988-1996
 - The economic crisis from 1996-2000
 - Recent developments running from 2001-2006

- Estimate RIF (Unconditional Quantile) regressions for 19 log wage quantiles from 5th to 95th for each year

- The covariates used are:
 - 15 education dummies
 - Potential experience and its square
 - Marital status
 - 9 occupation and 15 industry dummies
 - Region and area of residence

Selected RIF Regression Coefficients

- Lower-Primary
- Upper-Vocational
- Post-Secondary Vocat
- Bachelor Academic

Average years of schooling increased from 7.9 to 8.3 years.

Rapid rise in average real wage largely driven by wage structure effects.

More positively sloped coefficient curves for higher education levels.

Significantly steeper curves in 1996 indicates greater inequality-enhancing characteristics of higher education.

Dilaka Lathapipat (ANU and DPU)

Wage Distribution in Thailand

July 2008

Selected RIF Regression Coefficients

- Average years of schooling increased from 7.9 to 8.3 years

Selected RIF Regression Coefficients

- Average years of schooling increased from 7.9 to 8.3 years
- Rapid rise in average real wage largely driven by wage structure effects
Economic Boom (1988-1996)

- Average years of schooling increased from 7.9 to 8.3 years
- Rapid rise in average real wage largely driven by wage structure effects
- More positively sloped coefficient curves for higher education levels
Average years of schooling increased from 7.9 to 8.3 years
Rapid rise in average real wage largely driven by wage structure effects
More positively sloped coefficient curves for higher education levels
Significantly steeper curves in 1996 indicate greater inequality-enhancing characteristics of higher education

FFL Decomposition Results for 1988-1996

- Observed increase in real wages largely driven by favourable changes in the wage structure

Dilaka Lathapipat (ANU and DPU)
Wage Distribution in Thailand
July 2008
Observed increase in real wages largely driven by favourable changes in the wage structure

Composition effect plays a minor role
Observed increase in real wages largely driven by favourable changes in the wage structure
- Composition effect plays a minor role
- Wage structure effect reduces inequality in the lower half of the distribution
Observed increase in real wages largely driven by favourable changes in the wage structure

Composition effect plays a minor role

Wage structure effect reduces inequality in the lower half of the distribution

And increases that in the top half
Observed increase in real wages largely driven by favourable changes in the wage structure
Composition effect plays a minor role
Wage structure effect reduces inequality in the lower half of the distribution
And increases that in the top half

We break down the effects further into the contribution of each generic group of covariates
Dilaka Lathapipat (ANU and DPU)

Wage Distribution in Thailand
July 2008 20 / 29

- Wage structure curve for education approximately positively-sloped
- Wage structure curve for education approximately positively-sloped
- Increase in returns to education for those above the 40th quantile exceed those at the other end
Wage structure curve for education approximately positively-sloped

Increase in returns to education for those above the 40th quantile exceed those at the other end

Biggest gainers are "Upper Vocational", "Post Secondary" and those with university degrees

- Wage structure curve for education approximately positively-sloped
- Increase in returns to education for those above the 40th quantile exceed those at the other end
- Biggest gainers are "Upper Vocational", "Post Secondary" and those with university degrees
- Combined effect of education is clearly inequality-enhancing during the boom period
Changes in the wage ratios between selected quantiles can also be analysed.
Changes in the wage ratios between selected quantiles can also be analysed

- Combined effect of education is to increase the 50:10 and 90:10 ratios by more than 16% over the boom period
Average years of schooling went from 8.3 to 9 years
- Average years of schooling went from 8.3 to 9 years
The Crisis (1996-2000)

- Average years of schooling went from 8.3 to 9 years

- Composition effect completely offset by the wage structure effect
Average years of schooling went from 8.3 to 9 years

- Composition effect completely offset by the wage structure effect
- Combined effect reduces wage dispersion throughout
- Workers with secondary and post secondary qualifications suffered significant declines in their wages
Workers with secondary and post secondary qualifications suffered significant declines in their wages.

Those with university degrees suffered to a lesser extent.
Workers with secondary and post secondary qualifications suffered significant declines in their wages

Those with university degrees suffered to a lesser extent

The 5th and 95th quantiles aside, the combined effect of education again enhances top-end inequality while reduces that at the bottom-end
The combined effect of education is relatively small over this period
Recent Developments (2001-2006)

Average real wage increased from 58.7 to 61.5 Baht, but the increase is not evenly shared. Workers between the 55th and 70th quantiles experienced a reduction in wages. The U-shaped pattern is driven by combined wage structure effects. Wage structure changes depress wages in the upper half of the distribution, while composition effects play an offsetting role.
Average real wage increased from 58.7 to 61.5 Baht, but the increase is not evenly shared.
• Average real wage increased from 58.7 to 61.5 Baht, but the increase is not evenly shared
• Workers between the 55th and 70th quantiles experienced reduction in wages
Average real wage increased from 58.7 to 61.5 Baht, but the increase is not evenly shared.

Workers between the 55th and 70th quantiles experienced reduction in wages.

The U-shaped pattern driven by combined wage structure effect.
- Average real wage increased from 58.7 to 61.5 Baht, but the increase is not evenly shared
- Workers between the 55th and 70th quantiles experienced reduction in wages
- The U-shaped pattern driven by combined wage structure effect
- Wage structure changes depress wages in the upper half of the distribution, while composition effect plays an offsetting role
• Education again has the largest share in the overall composition effect and its influence increases with quantiles
Education again has the largest share in the overall composition effect and its influence increases with quantiles.

Changes in wage structure due to education favour individuals in the top 30% of wage distribution.
- Education again has the largest share in the overall composition effect and its influence increases with quantiles.
- Changes in wage structure due to education favour individuals in the top 30% of wage distribution.
- The majority of these either hold post-secondary vocational or university qualifications.
Education again has the largest share in the overall composition effect and its influence increases with quantiles.

Changes in wage structure due to education favour individuals in the top 30% of wage distribution.

The majority of these either hold post-secondary vocational or university qualifications.

Returns to education for the rest of workers generally declined or stagnated.
Education emerged as a major factor contributing to the observed increase in top-end wage inequality over this period.
Education emerged as a major factor contributing to the observed increase in top-end wage inequality over this period.

It also plays a role in compressing wage dispersion in the lower end of the distribution.
Summary of Effects of Education

The Effects of Education on Wage Inequality for the three time intervals

Wage Structure Effect from Education

Composition Effect from Education

Total Effect from Education

Dilaka Lathapipat (ANU and DPU)
Wage Distribution in Thailand
July 2008
Concluding Remarks

- Composition of skills has undergone a dramatic change over the 19 years.
Concluding Remarks

- Composition of skills has undergone a dramatic change over the 19 years
- Superficial improvements in terms of summary measures masks important changes at various points in the wage distribution
Concluding Remarks

- Composition of skills has undergone a dramatic change over the 19 years
- Superficial improvements in terms of summary measures masks important changes at various points in the wage distribution
- Education emerged as a major factor enhancing inequality in the upper half of the distribution
Concluding Remarks

- Composition of skills has undergone a dramatic change over the 19 years.
- Superficial improvements in terms of summary measures masks important changes at various points in the wage distribution.
- Education emerged as a major factor enhancing inequality in the upper half of the distribution.
- Effect of education greatest during economic boom and recent post-crisis periods.
Concluding Remarks

- Composition of skills has undergone a dramatic change over the 19 years.
- Superficial improvements in terms of summary measures masks important changes at various points in the wage distribution.
- Education emerged as a major factor enhancing inequality in the upper half of the distribution.
- Effect of education greatest during economic boom and recent post-crisis periods.
- Average returns to education declined consistently since 1997, and the decline is concentrated among the secondary schooling levels.
Concluding Remarks

- Composition of skills has undergone a dramatic change over the 19 years
- Superficial improvements in terms of summary measures masks important changes at various points in the wage distribution
- Education emerged as a major factor enhancing inequality in the upper half of the distribution
- Effect of education greatest during economic boom and recent post-crisis periods
- Average returns to education declined consistently since 1997, and the decline is concentrated among the secondary schooling levels
- A result of increase in relative supply of labour with secondary qualifications (due to establishment of SLF in 1996)
Concluding Remarks

- Composition of skills has undergone a dramatic change over the 19 years
- Superficial improvements in terms of summary measures masks important changes at various points in the wage distribution
- Education emerged as a major factor enhancing inequality in the upper half of the distribution
- Effect of education greatest during economic boom and recent post-crisis periods
- Average returns to education declined consistently since 1997, and the decline is concentrated among the secondary schooling levels
- A result of increase in relative supply of labour with secondary qualifications (due to establishment of SLF in 1996)
- Should question the merit of government subsidy given to students in public universities (~70% of tuition fees)